定型机、涂层机、地毯机专业生成厂家无锡前洲兴华机械2023年5月6日讯 活性染料(reactiondye)的染色原理:又叫反应性染料。分子中含有化学性活泼的基团,能在水溶液中与棉、毛等纤维反应形成共键结合的染料。活性染料由于其用母体染料、连结基和活性基组成,使其在使用时能与纤维形成牢固的共价键结合。
活性染料在水中具有极良好的溶解状态,活性染料主要依靠染料分子上的磺酸基团,溶解于水中,对于含乙烯砜基的中温型活性染料而言,除磺酸基团外,其β-乙基砜基硫酸根也是极良好的溶解基团。
在水溶液中,磺酸基及-乙基砜基硫酸基上的钠离子发生水化反应使染料形成负离子而溶解于水中,活性染料的染色是依靠染料的负离子上染到纤维上去的。
活性染料的溶解度均超过100克/升,大多数染料的溶解度在200~400克/升,个别染料甚至可达到450克/升。但是在染色过程,染料的溶解度会由于各种不同原因而下降(甚至完全不溶解),当染料溶解度下降以后,部分染料将会从单只的游离态负离子转变为粒子,由于粒子之间电荷斥力大大降低,粒子与粒子会互相吸引产生凝聚,这种凝聚先是染料粒子集合成凝聚体,然后转变为集聚体,最后转变为絮聚体,絮聚体尽管是一种松弛的集合,但由于在其周围由正电荷和负电荷形成的双电层,一般染液循环时的切变力很难将其分解,絮聚体很易在织物上沉淀,形成表面染色或玷污。
一旦染料产生这样的凝聚,染色牢度都会明显下降,同时会造成不同程度的色花、色斑、色渍。对某些染料,其絮聚体在染液的切变力下会进一步加快集合,造成脱水盐析。一旦发生盐析,染色的颜色会变得极浅,甚至染不上色,即使染上色,也是严重色花、色渍。
主要原因还是电解质引起的,在染色过程中,主要的电解质是促染剂(元明粉和盐),促染剂中含有钠离子,而染料分子中的钠离子当量远低于促染剂的钠离子当量数,在正常染色过程中正常的促染剂浓度对染浴中的染料溶解度不会造成太大影响。
但是当促染剂用量增加时,其溶液中钠离子的浓度也相应增加,过量的钠离子会抑制染料分子的溶解基团上钠离子的电离,从而降低了染料的溶解度,当促染剂浓度超过200克/升以后,大多数染料均会发生不同程度的凝聚,当促染剂浓度超过250克/升以后,这种凝聚程度将会加剧,先形成凝聚体,然后在染液切变力下很快形成集聚体及絮聚体,对于溶解度低的一些染料则部分盐析出来,甚至脱水,不同分子结构的染料抗凝聚及耐盐析性能也不同,溶解度越低,抗凝聚及耐盐析性能越差。
染料的溶解度主要是决定于染料分子中含磺酸集团的数目及含β-乙基砜基硫酸盐的数目,同时,染料分子的亲水性越大,溶解度越高,亲水性越小,溶解度越低。(例如偶氮结构的染料亲水性高于杂环结构的染料。)除此之外,染料分子结构越大,溶解度越低,分子结构越小,溶解度越高。
大致可以分四类:
A类,含双乙基砜基硫酸盐(即乙烯砜)及三反应基(一氯均三嗪+双乙烯砜)的染料溶解度最高,如元青B、藏青GG、藏青RGB、金黄:RNL以及由元青B混合制成的所有活性黑,三反应基的染料如ED型、汽巴s型等。这类染料的溶解度大多在400克/升左右。
B类,含异双反应基的(一氯均三嗪+乙烯砜)染料,如黄3RS、红3BS,红6B,红GWF,RR型三原色,RGB三原色等,他们的溶解度基于200~300克/升左右,其中,间位酯的溶解度要高于对位酯的溶解度。
C类:同样是异双反应基的藏青:BF、藏青3GF、深蓝2GFN,红RBN、红F2B等,由于磺酸基较少或分子量较大,其溶解度也较低,仅100~200克/升。
D类:含单乙烯砜基的及杂环结构的染料,溶解度最低,如艳蓝KN-R、翠蓝G、嫩黄4GL、紫5R、蓝BRF、艳橙F2R、艳大红F2G等。这类染料溶解度仅为100克/升左右,这类染料对电解质特别敏感,这类染料一旦出现凝聚,甚至不需要通过絮聚体过程,直接就盐析。
在正常染色过程中,促染剂最高用量为80克/升,只有深色才需要如此高浓度的促染剂。当染色浴中的染料浓度为10克/升以下时,极大多数活性染料在该浓度下仍有良好溶解度,不会发生凝聚。但问题在料缸里,按正常染色工艺,先加入染料,待染料在染浴中充分稀释至均匀以后,再加入促染剂,促染剂基本上都是在料缸里完成溶解过程的。
按以下工艺操作假设:
染色浓度为5%,浴比1:10,布重350Kg(双管液流),水位3.5T,元明粉60克/升,元明粉总量为200Kg(50Kg/包共4包)(料缸容量一般为450公升左右)。
在操作溶解元明粉时往往采用染缸的回流液,回流液中含有之前加入的染料,在料缸中一般先放入300L回流液,然后倒入二包元明粉(100公斤)。问题就在这里,大多数染料在此浓度的元明粉下均会发生不同程度的凝聚。其中C类将会出现严重凝聚,而D类染料不仅会出现凝聚,甚至出现盐析。
尽管一般操作工都会按照程序将料缸中的元明粉溶液通过主循环泵慢慢补入染缸中。但这300立升的元明粉溶液中的染料已经形成了絮聚体,甚至盐析。当料缸中的溶液全部补进染缸以后,严重的可以看到在缸壁,缸底上留有一层如油腻状的染料粒子,如果将这些染料粒子刮下来再放入清水中,一般很难再溶解。事实上,进入染缸的300立升溶液都是这样的。
记住还有二包元明粉同样会按此方法溶解并补进染缸。凡出现这种情况以后,必定产生色花、色斑、色渍,并使色牢度由于表面染色而严重下降,即使不出现明显的絮聚体或盐析。对于溶解度较高的A类及B类,同样也会出现染料凝聚。这类染料尽管尚未形成絮聚体,但至少部分染料已经形成集聚体。
这些集聚体在纤维中很难渗透。因为棉纤维的无定形区只允许单离子染料渗透扩散。任何凝聚体均无法进入纤维的无定形区。只能吸附在纤维表面。色牢度也会明显下降,严重的同样会发生色花、色渍。
当加入碱剂以后,活性染料的β-乙基砜基硫酸盐将会发生消除反应形成其真正的乙烯砜,乙烯砜是非常溶解基因。由于消除反应所需的碱剂极少,(往往只占工艺用量的1/10以下,)加入碱剂量越多,发生消除反应的染料越多。一旦发生消除反应后,染料的溶解度也会下降。
同样碱剂也属于强电解质,含有钠离子。因此过量的碱剂浓度同样会使己形成乙烯砜的染料发生凝聚,甚至盐析,同样的问题发生在料缸里,在溶解碱剂时(以纯碱为例),如果采用回流液。这时的回流液已含有正常工艺浓度的促染剂及染料。尽管可能部分染料已经被纤维吸尽,但至少还有40%以上的剩余染料在染液中。假设在操作时倒入一包纯碱,料缸中纯碱的浓度超过80克/升,即使此时回流液中的促染剂为80克/升,但料缸中的染料同样会发生凝聚,对于C类及D类染料甚至会发生盐析,特别是D类染料,即使纯碱浓度降为20克/升也会发生局部盐析。其中艳蓝KNR、翠蓝G、蓝BRF最为敏感。
染料发生凝聚,甚至盐析并不代表染料已全部水解。如果是由促染剂引起的凝聚或盐析,只要能重新使其溶解,它仍然可以染色。但要使其重新溶解必须加入足够量的助染剂(如尿素20克/升以上),并在充分搅拌的情况下升温到90℃以上。显然在实际工艺操作上是很困难的。
为了防止染料在料缸中发生凝聚或盐析,对溶解度较低的C类和D类染料,以及A类及B类染料做深浓色时,必须采用移染法工艺。
1. 促染剂用染缸回流水,在料缸中加热允分溶解(60~80℃)。由于刚流水中尚未染料,促染剂对织物无亲和力。已溶解的促染剂可以用最快速度补入染色缸。
2.盐水液循环5分钟以后,促染剂基本上已能充分均匀,然后加入已事先溶解的染料液,染料液需用回流液稀释,由于回流液中的促染剂浓度最高也只是80克/升,染料是不会发生凝聚的。同时由于染料不会受(相对低浓度)促染剂的影响出现染花问题。此时的染液补入染色缸也不必受时问的控制,一般10~15分钟补完。
3.碱剂尽可能用清水化,特别是对C类及D类的染料。因为这类染料在有促染剂的情况下对碱剂相当敏感,碱剂的溶解度比较高(纯碱在60℃时溶解度为450克/升)。溶解碱剂所需的清水不必太多,但加入碱液的速度需按工艺要求,一般以递增法加入为好。
4.对于A类中的双乙烯砜型染料由于在60℃时对碱剂特别敏感,反应速率较高。为防止瞬间固色出现色花、段差,可以在低温时预加1/4的碱剂。
在移染法工艺时,需控制加料速率的只是碱剂,移染法工艺不仅适用升温法,同样适用于恒温法。而恒温法可以提高染料的溶解度及加速染料的扩散和渗透,纤维无定形区在60℃时的膨胀率比30℃时的膨胀率高一倍左右。因此恒温法工艺更适合诸如筒子纱、绞纱。经轴包括卷染这类对渗透扩散要求高的或染料浓度相对较高的小浴比的染色方法。
注意,市场供应的元明粉有时带有较高碱性,其PH值可达到9~10。这是非常危险的。如果以纯净的元明粉和纯净的盐做比较,盐对染料的凝聚影响高于元明粉,这是因为在同样重量下,食盐中的钠离子当量高于元明粉中钠离子当量。
染料的凝聚与水质相当有关,一般钙、镁离子在150ppm以下对染料的凝聚不会造成太大影响,但水中的重金属离子,如三价铁离子及铝离子包括一些藻类微生物会加速染料凝聚,如三价铁离子在水中浓度超过20ppm就可明显降低染料的抗凝聚能力,而藻类的影响更严重。
中温型活性染料在浸染染色中,存在着不同程度的不匀染问题。主要表现是,容易产生色点色渍或色泽不匀,以及色牢度欠佳。常因此造中温型活性染料在浸染染色中,存在着不同程度的“不匀染”问题。主要表现是,容易产生色点色渍或色泽不匀,以及色牢度欠佳。常因此造成返工复修。
不可否认,由于染料自身的性能缺陷,是造成这些质量问题的根源。那么解决活性染料存在的技术问题的途径,主要是提高其吸着率和固着率。
中温型活性染料,在浸染染色中存在三大缺陷如下:
第一,在盐、碱共存的固色浴中,染料会因电解质(盐、碱)浓度较高,盐析作用较大,以及β-羟乙基砜硫酸酯活性基“消去反应”的发生,自身水溶能力的骤降,而产生不同程度的“凝聚”。尤其是些乙烯砜型染料,表现愈加严重。如C.I.活性元青5、C.I.活性艳蓝19、C.I.活性翠蓝21等。染料的“凝聚”程度过大,必然会造成色泽不匀不透,甚至是色点、色渍。而且还会影响色光的纯正度与色泽的坚牢度。
第二,在加碱固色阶段(尤其是固色初始阶段),染浴中的染料,会因键合固着反应的迅即发生、原有吸色平衡的快速打破,以及纯碱(也是电解质)的加入,电解质浓度的陡然提高,而产生不同程度的“骤染”。乙烯砜型染料的表现尤为突出。染料“骤染”程度过大,无疑会给染色质量(匀染透染效果以及染色牢度),造成明显甚至严重的不良后果。
第三,中温型活性染料的固着率,相对较低(60%~70%)。再加上染料在固色阶段存在着不同程度的“凝聚”问题与“骤染”问题。所以,纤维(或织物)上染料的浮色率(包括水解染料、半水解染料以及未水解又未固着的染料)较高,对染后皂洗的要求苛刻。倘若皂洗不到位,其染色牢度必然低下。
不同结构的染料,其染色性能不尽相同。实践证明,染色工艺只有与染料的实用性能相适应,才能获得最佳染色结果。所以,染色工艺不可一刀切。
常用中温型活性染料,就其染色性能可分为三种类型。
第一种类型。这类染料的性能特点是:在中性盐浴中,亲和力较大,一次吸色量较高。对碱不过于敏感,在加碱固色初期,染料的固色速率与吸色速率较缓和,没有明显的“凝聚”问题与“骤染”问题。这类染料主要是一些含异双活性基(一氯均三嗪活性基与β-羟乙基砜硫酸酯活性基)的染料。如国产中温型活性染料三原色:活性黄M-3RE.B-4RFN,活性红M-3BE、B-2BFN,活性蓝M-2GE、B-2GLN等。这类染料适合常规染色法-升温染色法染色。实践证明,这类染料采用常规升温染色法染色,通常不会产生染色质量问题。
第二种类型。这类染料的性能特点是:在中性盐浴中,亲和力弱,一次吸色量低。而且,对碱剂敏感,在加碱固色初期,染料的固色速率与吸色速率很快,“凝聚”现象与“骤染”现象突出。这类染料主要是一些乙烯砜型染料。诸如,C.I.活性艳蓝19,C.I.活性嫩黄160,C.I.活性元青5等。
这类染料最适合预加碱染色法染色。预加碱染色法,织物是在弱碱性盐浴中吸色?;钚匀玖显诩钚栽≈星缀土洗?,故一次吸色量可显著提高。由于染液浓度在加碱前大幅度下降,加碱后染料的凝聚现象与骤染现象都能得到缓解。因此,可以有效消除染料的性能缺陷造成的质量问题。
预加碱染色法工艺如下:
第三种类型。这类染料为拼混染料,其性能特点是匀染性差,色光稳定性差。常用中温型活性黑中有一半以上的品种属于这一类。如活性黑KN-G2RC,、活性黑GR、活性黑GWR、活性黑S-ED、活性黑N、活性黑ED、活性黑GFF、活性黑TBR等。
这类活性黑通常是以高浓C.I.活性元青5(又称活性黑KN-B、活性藏青B-GD) 60%~80%、C.I.活性橙82 10%~20%为主另加少量中温活性黄或活性红拼混而成。这类活性黑的性能缺陷是匀染性差,重现性差。原因是二个拼混组分的结构不同,配伍性太差。其中,C.I.活性元青5为双偶氮母体,含双乙烯砜活性基的染料。中温特征突出,最适合60~65℃吸色、固色。C.I.活性橙82为单偶氮母体,含乙烯砜与二氯均三嗪异双活性基的染料,其低温特征显著,最适合30~40℃吸色、固色。
因此,这类活性黑并非真正的中温型染料,而是亚中温型染料。倘若按中温型染料应用(于60℃染色),势必会因活性橙组分性能的不适应而产生两大后果。一是,活性橙的吸色、固色过于迅猛而上色不匀,很容易产生色花。二是,活性橙的水解过快,工艺因素(温度、时间、pH值)稍有差异,就会产生色差。这是因为C.I.活性元青5实为藏青色并非黑色,活性橙加入后才能呈黑色(橙色为蓝色的余色具有相互消色作用)。因此,活性橙上色量的多少与匀染性的好坏,对活性黑的染色结果(色光、黑度、均匀度),有着举足轻重的影响。
分段染色工艺一
这类活性黑由于它的两个主要拼混组分在染色性能上差异太大,所以既不适合升温法染色,也不适合预加碱法染色,而必须采用分段染色法染色。
分段染色工艺二
分段染色法,实为一浴二段法。即低温(30~40℃)染色时段,是使C.I.活性橙82正常上色。中温(60~65℃)染色时段,是使C.I.活性元青5正常上色。由于该工艺符合这类活性黑染色性能的特定要求,所以得色色光稳定,匀染性能优良。实践证明,该工艺可以从根本上克服这类活性黑容易产生色花、色差的缺陷,可有效提高染色一次成功率。
注:在市供活性黑中,有部分品种是真正意义上的中温型活性黑。因为它们抛弃了C.I.低温活性橙82,而以双偶氮双乙烯砜活性基的C.I.活性橙107,或单偶氮母体带乙烯砜与一氯均三嗪异双活性基的新型活性橙替代。由于这些活性橙中温特征突出,与C.I.活性元青5的上染性能相当接近,所以,两者的配伍性优良,匀染性好,色泽稳定。比如,活性黑ED-NN、活性黑NF、活性黑W-NN、活性黑RW等就属于此类。
这类活性黑由于各拼混组分的上色同步性好,所以没有必要采用分段染琶法染色。但由于其主要拼混组分C.I.活性元青5具有第二种类型的染料特征,所以,应采用预加碱染色法染色,而不宜采用升温染色法染色。
1.电解质的施加
电解质的施加量。经检测,多数中温型活性染料染深色,电解质的最高用量以<70g/L为宜。部分个性强的活性染料,如活性翠蓝BGFN染深色,电解质的最高用量必须<60g/L;活性艳蓝KN-R染深色,电解质的最高用量必须<40 g/L。理由是,电解质用量过高,其得色深度实际提高并不多,而在加碱固色初期却会因盐、碱(纯碱也是电解质)混合浓度过高,导致染料的“凝聚”程度与“骤染”程度过大,给染色质量造成负面影响。
电解质的施加法。这里最值得一提的是绳状染色(喷射溢流机染色、气流机染色)时,电解质必须先加染料必须后加(加料顺序与卷染相反)。理由是,按传统方法先加染料,以含染料的回流水来溶解电解质,染料在电解质的饱和溶液中会即刻絮聚而析出,压八缸内黏附在织物上,极易造成色点、色渍染疵。而先加电解质以含电解质的回流水来溶解稀释预先调匀的染料,则染料不会发生有害的“凝聚”或沉淀(经检测,常用中温型活性染料在电解质<80g/L的中性浴中,溶解稳定性良好。)
2.碱剂的施加
纯碱的施加量。经检测,常用中温型活性染料染棉,其最佳固色pH值为10.5-11.0(活性翠蓝60℃染色为12.0,80℃染色为11.0)。
常用粉状轻质纯碱5~25g/L,pH=10.65~10.99,其pH缓冲能力很大。因此,根据所染色泽的深浅,纯碱用量5~20g/L已足矣。用量过多,得色深度提高不明显,反而会降低染料在盐碱固色浴中的溶解稳定性,危害染色质量。
纯碱的施加法。实践证明,碱剂的施加,务必要遵循以下两条原则:
一是,纯碱的加入,必须建立在“吸色平衡且吸色均匀”的基础上。也就是说,只有在中性盐?。ㄎ。┲校嬲锏轿胶舛揖迫臼迪治戎?,碱剂方可加入。这是因为,达到吸色平衡后,残留染液浓度最低,而染液浓度越低,碱剂加入后染料的凝聚倾向越小,二次吸色速率越温和,产生染疵的概率越小。碱剂加入后,纤维上的染料会因发生固着而丧失移染能力。这会使吸色阶段产生的不均匀性变为永久性疵点。
二是,碱剂的施加,必须是“先少后多,分次加入”。因为,碱剂(纯碱)加入越快,固色浴的碱性相对越强,盐碱混合浓度也越高,染料的凝聚行为与上色行为越激烈,越容易产生染色质量问题。实践证明,固色浴的碱性由弱渐强,盐碱混合浓度由低渐高,染液浓度由浓渐淡,可以有效缓解染料因碱剂的加入而产生的过激行为,从而确保染色质量实现稳定。
皂洗效果的好坏,是决定活性染料染色牢度优劣的关键因素。因此,一定要重视皂洗工艺,克服重染色轻皂洗的错误理念。
皂洗工艺的要点是:皂洗一定要在充分清洗的基础上进行。即染色后要先经温水、热水清洗,将织物上残留的盐、碱、染液以及部分浮色染料去除,以提高皂洗液的清爽度,降低染料的“返沾”率。
采用普通皂洗剂皂洗,关键是皂洗温度一定要保持在90℃以上。绝不可为了少落色少修色而以中温(60~70℃)皂洗。采用低温(60℃)皂洗剂皂洗,关键是一定要选用在低温条件下,润湿、渗透、助溶(增溶)、扩散(分散)效果好的皂洗剂,以确保良好的皂洗效果。
附染料抗凝聚及耐盐析能力测试:
测定一:称取0.5克染料,25克元明粉或盐,溶解于25℃左右的100毫升净水中,5分钟左右,用滴料管吸取该溶液在滤纸上同一位置连续滴2滴。
测定二:称取0.5克染料,8克元明粉或盐及8克纯碱,溶解于25℃左右的100毫升净水中,5分钟左右,用滴料管吸取该溶液在滤纸上同一位置连续滴2滴。用上述方法可简单判断该染料的抗凝聚,耐盐析能力,基本上可判断应采用何种染色工艺。
来源:印染时讯
©2016 版权所有兴华机械 苏ICP备15023076号-1
邮箱登录 | 网站地图 XML 技术支持:Insight 选购涂层机 定型机 地毯机 地毯背胶机 静电植绒机请认准兴华机械 苏公网安备 32020602000947号 |